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The mean value of the H O H  angle, (2e) ,  is smaller 
than the observed value (Fig. 4) for both the NCA and 
the RBM model. This might at least partly explain 
why the H - O - H  angle is generally observed to be 
about  3 ° larger when bound compared to the free 
molecule as pointed out in the Introduction. However, 
the correction factor is much larger for the N C A  
model than the RBM model. 

Compar ing  calculated and observed normal  mode 
frequencies and U matrices for the atoms a representa- 
tive value for k seems to be 20 N m - i  (Pedersen, 1974). 
For  this value of  k the observed value of  the OH dis- 
tance will be 0.04 A shorter than the mean value and 
the observed H O H  angle will be 2 ° larger than the 
mean. Compared  to the average values reported by 
Ferraris & Franchini-Angela  (1972) this implies that 
the corrected OH distance on the average is stretched 
0.02 A and the corrected H O H  angle is only enlarged 
1.5 ° when the molecule is bonded. However, large 
variations have been observed in the geometry from 
one structure to another.  It turns out to be difficult to 
systematize the observed variations. It is hoped that 
more reliable relations will be discovered from the 
geometry when the effect of  motion has been corrected 
for. The correction must then be done as outlined 

above on the basis of  a realistic potential fitted to the 
available information for each structure. 
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The Bonded Water Molecule. II. A Simple Model of the Vibratory Motion 
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A simple, quantitative model describing the vibratory motion of a water molecule bound in a con- 
densed phase is presented. The model is based on a normal coordinate analysis of a bent XY2 molecule 
in a combined internal and external potential. The potential can be used to simulate the potential at 
a specific site in a crystal. Numerical values of the frequencies and eigenvectors, referred to Cartesian 
coordinates, are calculated from an isotropic external potential. The range of force constant in the 
external potential covered is from 0 to 50 N m-i .  The force constants in the internal potential can be 
chosen to make the calculated frequencies of the internal modes equal to the observed values. The 
nine calculated normal modes can be divided into ~oups of three: intramolecular, torsional and 
translational. The calculated frequencies of the torsional and translational modes are in the range 
observed for librational modes. The translational and the intramolecular modes are coupled making 
the calculated intramolecular frequencies increase with the strength of the external potential using a 
constant internal potential. From the model, the mean square amplitudes of vibration of the individual 
atoms are calculated. The calculated values are found to be in the range observed in neutron-diffrac- 
tion studies of hydrates. 

Introduction 

The free water molecule is a bent triatomic molecule 
with symmetry 2mm (C2v). The dimensions of  the 

* Also at the Central Institute for Industrial Research, Oslo 
3, Norway. 

isolated molecule and the rotary and vibratory energy 
levels are known in detail (Kern & Karplus,  1972). We 
focus the attention on the water molecule when bound 
in a crystal and propose a simple quantitative model 
as a f ramework for discussing experimental  results 
obtained in spectroscopic investigations and in neu- 
tron-diffraction studies. The results obtained with the 
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different techniques are interrelated - the molecular 
shape observed in diffraction studies is an average over 
the vibratory motion studied spectroscopically - but 
generally the results are discussed in highly different 
terms. 

The general theory of the dynamics of a crystal 
lattice in the harmonic approximation is well known 
(Born & Huang, 1954). However, the theory is com- 
plicated to use on more complex solids and the results 
obtained on one crystal are difficult to generalize. This 
is clearly shown in the analysis of potassium oxalate 
monohydrate by Fukushima (1970). We shall therefore 
use a simpler approach and regard the crystal as 
consisting of stationary atoms except one water mole- 
cule. We shall discuss the motion of a single water 
molecule in the field of stationary atoms. In this paper 
we describe the first step in which the model itself is 
presented. Here we shall only use an isotropic external 
potential to show the main features of the model. 
Later the model will be used for discussing specific cases 
in which the external potential is calculated from the 
crystal structure by semi-empirical expressions for the 
interatomic potentials. 
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Fig. 1. The Cartesian displacement coordinates for an XY2 

molecule as used in the text. 

NORMAL MODES OF A WATER MOLECULE IN AN ISOTROPIC POTENTIAL 
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Fig. 2. The normal modes of a water molecule in an isotropic 
external potential. The force constant is 12 Nm -1. The force 
constants in the internal potential have been taken from 
Fifer & Schiffer (1970). The amplitudes shown by the length 
of the arrows are not scaled correctly and do not show 
either the correct relative amplitudes in one mode or the 
correct relative amplitudes of the modes. 

Our starting point will be the dynamics of the free 
water molecule. It is well known that the vibratory 
motion of the free molecule can be described in terms 
of the three normal modes: the symmetric stretch (Va), 
the antisymmetric stretch (v3) and the bend (v2). As 
discussed by Herzberg (1945) it is possible to find 
reasonable force constants in the harmonic approx- 
imation to calculate normal mode frequencies in good 
agreement with the observed values. However, as 
shown by Darling & Dennison (1940) and later refined 
by Benedict, Gailar & Plyler (1956) the anharmonic 
contribution is significant. For example: the mean 
value of the O-H distance in the lowest vibrational 
state is 0.0173 A larger than the value at equilibrium: 
0.9572 A (Kuchitsu, 1971). 

When the water molecule is bound in a condensed 
phase the two stretching modes are shifted to lower 
frequencies indicating a weakening of the O-H bond 
due to hydrogen-bond formation. Again, as shown by 
Filer & Schiffer (1970), it is possible to find reasonable 
force constants in the harmonic approximation to cal- 
culate normal mode frequencies in good agreement 
with the observed infrared absorption bands. However, 
the spectroscopic information is not detailed enough 
to make it possible to get information on the anhar- 
monic part of the lattice perturbed intramolecular 
potential. We shall therefore assume, following Fifer & 
Schiffer (1970), that the anharmonicity is not signifi- 
cantly changed from what it is in the vapour. 

To find the normal modes one has to carry through 
a normal coordinate analysis of the motion of the mole- 
cule. This was earlier a major operation to do numer- 
ically. However, with the aid of a modern computer the 
calculation is quickly done. As pointed out by Gwinn 
(1971) the approach should depend on the tools 
available for the calculation. Gwinn showed that, with 
a computer, it is faster and simpler to go back to the 
basic equations formulated in Cartesian coordinates 
and avoid much of the later developments mainly 
introduced to simplify the calculation by hand. In the 
Gwinn approach the analysis of an N-atom molecule 
will lead to 3N normal modes. If the molecule is linear 
five of these modes will have frequency equal to zero; 
if the molecule is non-linear six modes will have 
frequency zero. This is as expected and follows from 
the fact that the molecule will have three translational 
and three, or two, rotational degrees of freedom. These 
degrees of freedom will have zero frequency when the 
molecule is in a constant potential as it by definition is 
when the molecule is flee. However, when the molecule 
is bound in a solid the potential is not constant. We 
shall therefore extend the Gwinn approach to cover a 
molecule bound in a condensed phase by simply adding 
to the intramolecular potential an external potential. 

Normal coordinate-~analysis 

The task in a normal coordinate analysis is to find a 
set of coordinates - the normal coordinates - such that 
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the total energy written in terms of these coordinates 
is in diagonal form (Herzberg, 1945; Born & Huang, 
1954). The major obstacle for doing this is the poten- 
tial energy of the molecule which is usually expressed 
in terms of internal coordinates. For the water mole- 
cule a commonly used intramolecular potential V, is 

2 V, = Fr(Ar z + Ar z) + F~(2roAcO 2 + 2F,,AQAr2 

+2F,~(Ar~+flr2) (2r0,d~) (I) 

Arl, Ar2 and r0(2z/c0 are displacements of the bonds 
and apex angle of the water molecule from their 
equilibrium values: Q=rz=ro  and 20~. We shall de- 
scribe the displacements with the use of the Cartesian 
coordinate system shown in Fig. 1. We collect the three 
internal coordinates in the matrix q then 

q = L x  (2) 

where L is the transformation matrix connecting the 
nine Cartesian displacement coordinates x to q (see 
Appendix 1). Equation (1) can be written in matrix 
notation 

2V,,=qr,,q (3) 
where 

F,,= f,,. F,. f , .  
F,~ F,~ F~/. 

Substituting q with x in equation (3) by means of 
equation (2): 

2 V, = ~(LF,,L)x. (4) 

The external potential Ve can be written 

2 v'e = ~F~x. (5) 

Fe is a symmetric matrix of the order (9,9) consisting 
of the various force constants characteristic for a 
specific site in a particular crystal. 

The total potential energy is then 

2 V= 2V,, + 2Ve=Y~Fx (6) 
where 

F = F~ + LFaL. 

We can now follow Gwinn (1971) and introduce the 
mass-weighted Cartesian displacement coordinates X~: 

X l = m l l Z x ~  . 

In matrix notation 
x - M X  (7) 

where M is a diagonal matrix with m [  1/z on the di- 
agonal. The normal coordinates Q~ are then found by 
diagonalizing the matrix MFM, i.e. we look for a 
matrix B such that 

X = B Q  (8) 
and 

B(MFM)B= A (9) 

where A is a diagonal matrix with o9 z on the diagonal. 
og~=2rcv~ where v~ is the frequency of the ith normal 
mode. 

To find B and A we use the Jacobi method as given 
as a subroutine written by Kuo (1965) where a detailed 
discussion of the Jacobi method can be found. Faster 
and perhaps better subroutines exist, but the one 
chosen functions satisfactorily with computer time of 
the order of seconds. (Program in Basic on a Norwegian 
minicomputer NORD-1.) 

In the following discussion we have chosen the 
simplest possible external potential. Fe in equation (5) 
is simplified to a diagonal matrix with all diagonal 
elements equal to k. The numerical values presented 
below have been calculated for k in the range 
0 < k < 5 0  N m -~ and values of the intramolecular 
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Fig. 4. The calculated elements of the U matrix describing the 
vibratory mot ion  of the individual a toms as a function of 
the force constant  when the molecule is in an external iso- 
tropic potential.  The internal potential is constant.  
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force constants (in N m-z) as given by Fifer & Schiffer 
(1970)" Fr=845"00; F , r = - 1 0 . 4 7 ;  F~,=16.72; F , =  
75.40. 

Discussion 

The normal modes 
In the classical picture the atoms move with a con- 

stant phase relative to each other in a normal mode as 
shown in Fig. 2. Three of the modes can clearly be 
referred to the intramolecular modes. Of the remaining 
six which we shall call librational modes, we can 
choose three which are mainly torsional and three 
which are mainly translational. 

The three torsional modes constitute a degenerate 
set of modes. Hence, a linear combination of them is 
also a normal mode. One of the modes is clearly the 
rocking mode - oscillation about an axis normal to 
the plane of the molecule. Making the simple linear 
combination 'sum' and 'difference' between the other 
two modes, we see that the 'sum' is the wagging mode 
and the 'difference' the twisting mode. (In the wagging 
mode the atoms oscillate about an axis in the plane of 
the molecule parallel to H - H  and in the twisting mode 
about the twofold axis.) 

The three translational modes are not degenerate 
and they are clearly not pure translational modes. 

In Fig. 3 is shown the dependence of the frequencies 
of the normal modes on the force constant k. The cal- 
culated frequencies are in the range observed in hy- 
drates: translational bands in the region 100-300 cm -1 
and torsional bands in the region 400-700 cm -1 
(Boutin & Yip, 1968). 

For a harmonic oscillator the resonance frequency is 

v= ~ -  (10) 

where f is the force constant and m is the mass being 
moved in that mode. W h e n f i s  given in N m -z and m 
in atomic mass units then we have 

v (in cm -z) = 130.28 V m f " (11) 

The torsional frequency given in Fig. 3 is obtained 
if f =  2k and m =2mH, where mH is the mass of a hy- 
drogen atom. We obtain v~ by setting f =  3k and m-- 
M in equation (11) (M is the mass of the molecule). 
The interpretation of these relations is that these two 
frequencies are the normal modes of the water molecule 
regarded as a rigid body (Pedersen, 1974). For a rigid 
body moving in an isotropic potential the three tor- 
sional and the three translational modes are two 
degenerate sets. As shown in Fig. 3 the translational 
modes are coupled differently to the intramolecular 
modes lifting this degeneracy. 

The coupling between the translational and intra- 
molecular modes is also manifested in a linear increase 
of the intramolecular frequencies with k: 

vl (cm-1)=3830"4+2"098k (N m -1) 
v2 (cm -1) = 1647-4 + 4-609k (N m -1) 
v3 (cm-1) = 3942.0+ 1.979k (N m -1) 

(12) 

This result is important. It is well known that the 
frequencies of the two stretching modes decrease when 
the water molecule is bound in a condensed phase 
(Falk & Knop, 1973). This frequency decrease is inter- 
preted as being due to hydrogen-bond formation 
weakening the OH bond, i.e. the intramolecular force 
constants are reduced. However, the frequencies of the 
free molecule are always used as a reference. But, 
apparently, one should instead use the free molecule 
vibrating at the crystal site as the reference. From the 
results just given the frequency decrease due to bonding 
is significantly greater than that obtained using the 
free molecule as reference. 

Similar calculations have been performed on D20. 
The results obtained are consistent with the picture 
given above taking into account the difference in mass 
between D and H. 

The mean square amplitudes of vibration 

In a diffraction study of a crystal the atoms are 
generally treated independently (Lipson & Cochran, 
1966). For each atom a temperature factor matrix B is 
determined. From B can be calculated a U matrix such 
that the mean amplitude of vibration of the atom in a 
direction N, u 2, is given as 

u 2 = I~UN. (13) 

The components of the U matrix for each atom can be 
calculated very simply. In terms of the Cartesian dis- 
placement coordinates introduced in Fig. 1 a typical 
element in U, Ujj, is: 

Uii=(x~xj) (14) 

when U is referred to the coordinate system used in 
Fig. 1. Generalizing a result found by Stelevik, Seip & 
Cyvin (1972) it is easy to show that 

9 

(XiXj)= ~ F(vk)V~kVjk. ( 1 5 )  
k = l  

The mean square amplitude is the thermal average over 
the molecular vibrations regarding the molecules as an 
ensemble of harmonic oscillators. F(v) is the so called 
frequency factor: 

F(v) = - ~  coth 

h 
.......... (0 .5+l /{exp[hv/ (k ,T)]- l } ) .  (16) 

IJ 

Here h is the Planck constant divided by 2~, kB the 
Boltzmann constant and T the temperature in K. 

V~j in equation (15) are the elements of a matrix V 
given as: 

A C 31B - 16 
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V = M B  (17) 

because as B connects Q and the mass weighted coor- 
dinates X, V will then connect Q and the Cartesian 
displacement coordinates x. Using equation (15) we 
have calculated the elements of  the U matrix for the O 
and the H atoms as a function of  k. The results are 
given in Fig. 4. 

In an isotropic external potential the symmetry of 
the water molecule is still 2ram. Hence the oxygen 
atom sits at a site with symmetry 2ram and therefore 
the U matrix for the oxygen atom only contains 
diagonal  elements in the coordinate system used. The 
H atoms sit at a site with symmetry m; therefore the 
only non-zero off-diagonal element is U(1,2). These 
symmetry requirements are fulfilled by the results of  
the calculations. 

Owing to the functional dependence of  the frequency 
factor [equation (16)] the low-frequency normal modes 
give the largest contr ibution to the mean square 
ampli tude of  vibration of  the atoms. Fur thermore the 
elements of  the U matrix will grow beyond all limits 
when k = 0 which is correct, as the molecule then is 
free and not bound to any particular site. However, 
when k = 0 ,  equation (15) can still be used el iminating 
the modes with zero frequency. We then find at 300 K 
for the non-zero elements: 

for the O atom: 

for the H atom: 

Ul1= 1"95 × 10 -s A 2 
U22 = 5"66 × 10 -s 

U n =  0"00448 A 2 
U12 = ± 0"00036 
U22 = 0"00430. 

The contr ibution from the intramolecular  modes to 
the amplitudes of  vibration in the crystal is therefore 
small but not negligible for the H atoms. 

It is interesting to note in Fig. 4 that the three non- 
zero elements in U for oxygen are not equal, i.e. the 
motion is anisotropic even though the molecule moves 
in an isotropic potential. (This is shown even more 
pronounced by the hydrogen atoms.) The out-of-plane 
motion has a larger ampli tude than the in-plane mo- 
tion. This follows from the fact that the translat ional  
mode moving the oxygen atom normal to the plane of 
the molecule is the mode with lowest frequency. 

The calculated U matrix for D20 is closely similar to 
the results obtained for H20. Owing to the increased 
mass the amplitudes are somewhat reduced but only 
by about 0.003 to 0.005 A 2. 

Observed values of  the elements of U referred to the 
same coordinate system as used in Fig. 1 are given in 
Table 1. From the data in Table 1 it follows that the 
calculated values of U given in Fig. 4 cover the range 
observed experimentally. 

The symmetric mean-square ampli tude matrix 
(x~xj) is a 9 x 9 matrix but only the 3 x 3 diagonal 
blocks can be given a direct physical interpretation as 
described above. Elsewhere the influence of the motion 
on the observed geometry is discussed and then the 
correction factor is based on this generalized mean 
square ampli tude matrix (x~xj) (Pedersen, 1974). 

It is interesting to compare (x~xj) calculated here 
with the corresponding matrix computed from the 
rigid-body motion model of  Schomaker  & Trueblood 
(1968). In the RBM model (x~xj) is expressed as a 
linear function of  the matrix elements of  three 3 × 3 
matrices T, L and S. For  a water molecule at a site 
with 2mm symmetry S is zero and T and L are diagonal 
matrices. Shifting the origin in Fig. 1 to the oxygen 

Table 1. Observed elements of  the mean square amplitude matrix U for the atoms in the water molecules in some 
accurately determined hydrates 

Compound 
~-COOH 2HzO 

fl-COOH 2HzO 

Ice IX 

K2C204 H20 
Cu(NH4)z(SOa)z. 6H,O 0(7) 

0(8) 

0(9) 

BaCI2.2H20 O( 1 ) 

0(2) 

U~ 1 for O (in 0-01 .&z) Ulj 
Atom (1,1) (2,2) (3,3) (1,2) (1,3) (2,3) Atom (I,1) 
0(3) 3.6 3.2 5.6 0-2 0"5 1.3 D(2) 4.7 

D(3) 4-5 
0(3) 3"7 2.7 10.6 0.2 0-3-0.5 D(2) 4.6 

D(3) 4-7 
0(2) 2.8 1.7 2.5 0 -0.3 0 D(7) 3.2 
O(1) 2.2 1.8 2.6 0.1 0 0.1 D(5) 2.6 

D(6) 2.2 
0(3) 2-3 2.6 7.4 0 0 0 H 3.3 

2-9 3.1 4.2 0.1 0.4-0-1 H(15) 3.9 
H(16) 4"0 

2-7 2-9 3"7 0 -0"3 0-1 H(17) 3"8 
H(18) 3-8 

2-6 2-3 2-8 0 0 .1-0 .6  H(19) 3"3 
H(20) 3-3 

2-4 1.7 2.4 0 0-1 -0.2 H(6) 4-1 
H(7) 4.2 

2.5 1.9 2-5-0.3 0"3-0.2 H(8) 4.5 
H(9) 4-8 

for H (in 0.01 /~') References 
(2,2) (3,3) (1,2) (1,3) (2,3) 
3"5 7"7 0 0-5-0-1 Coppens & Sabine 
5.6 7-7 -1.2 0.9 0.9 (1969) 
5.0 7.4 1-3 0 .8-0 .4  
4-1 7-2 -0"5 0-4 -0-3 
2-5 3.2 0.3 0.3 -0.1 
2.6 3-2 0.3 0.3 0 LaPlacaetal.(1973) 
2-8 3.4 -0.4 0.1 -0.1 
3.9 5.1 0"5 0.3 0 
4.5 5.6 1.0 0 -0.4 Sequieraetal.(1970) 
5"0 5"5-0"9 0.1-0-9 Brown & Chidam- 
4.1 4.9 0 .7-0 .4  0.4 baram(1969) 
4"1 4"6 -0"8 -0-3 0"3 
4-0 5"1 0-6 0"3-1"0 
3"6 4-4 -0"4 0 -0"6 
3"7 6"3-1.3 0"3 -0"4 
3-3 5"5 -1"2 0 0"1 
4"2 4"4 1"4 0"1 -0.4 Padmanabhan et al. 
4"8 5"7 -2"2 0"1 -0"1 (1963) 
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a tom,  we ob ta in  the mat r ix  e lements  given in Table  2 
(Pedersen,  1974). In this  table  also numer ica l  values are 
given calcula ted for  k = 20 N m -  ~ for  bo th  models .  We 
see tha t  the two matr ices  are very s imilar  wi th  a few 
no tab le  differences:  (x3xo), (X3X9) and  (X6X9) a r e  zero 
in the model  presented  here bu t  equal  to a t r ans la t ion  
in the R B M  model .  The  or igin o f  these differences can  
be unde r s tood  f rom look ing  at  the no rma l  modes  in 
Fig.  2. 

Tab le  2. The elements o f  mean square amplitude matrix 
(x ix i )  for  the rigid-body motion model 

The numerical values obtained for the model presented in this 
paper are given for comparison below (k =20 Nm-~, T= 300 
K). All numbers are in 0.01/~2 
i/j 1 2 3 4 5 6 7 8 9 
1 a - d  0 0 d 0 e 0 0 

1-42 -0-50 0 0-79 0"31 0 0"60 0"04 0 
2 b 0 - d  f 0 0 e 0 

2.35 0 -0"31 -0"28 0 0"46 0"70 0 
3 c 0 0 e 0 0 0 

3"25 0 0 0 0 0 0 
4 a d 0 e 0 0 

1.42 0"49 0 0"60 -0"04 0 
5 b 0 0 e 0 

2"35 0 -0"04 0"70 0 
6 c 0 0 e 

3"25 0 0 0 
7 e 0 0 

1-00 0 0 
8 e 0 

0"81 0 
9 e 

2"14 

a=Un=l'37; b=U22=l '78;  c=U33=4"02; d=U12=0"79; 
e= Uo = 0"76; f = 2 e - b =  -0"26. 

A P P E N D I X  

E v a l u a t i o n  o f  the t r a n s f o r m a t i o n  m a t r i x  L 

We are w o r k i n g  under  the a s sumpt ion  of  small  dis- 
p lacements  f rom the equ i l ib r ium posi t ion.  To  find the 
mat r ix  L in equa t ion  (2) we use a T a y l o r  expans ion  of  
the q(I) abou t  the mean  posi t ion.  

qi = oXi 
, = l  \ 8x ,  ! 

q t = A R l ,  q2=AR2, and  q3=roA(2~) 

F r o m  Fig. 1 it fol lows tha t  

r t  z = [x7 - (xl - ro sin ~)]z + [(xa + ro cos a) - x2] 2 
+ (X9 -- X3) 2 

r2=[(Xa+ro sin ~)--XT] 2 +[xs--(xs+ro cos ~)]z 
-~- (x 6 -- x9) 2 

R2=[(x4+ro sin c O - ( x l - r o  sin ~)]2 
+ (x5 - x2)  2 + (x6 - x3)  2 

2rlr2 cos 2e=r2 + r 2 - R  z. 

F o r  example,  to find OE2/OX 7 w e  different ia te  the equa-  
t ion  for  rz z" 

Or2 
2r2 ~ x 7  = - 2(x4 + ro sin c ( -  x7) 

8x7] 0 = - s i n  a .  

A p p l y i n g  this  sys temat ica l ly  we ob ta in  

ql = - s i n  ~ .  x l -  cos ~ .  x2 + sin ~ .  x7 + cos ~ .  x8 

q2 = sin a .  x 4 - c o s  (~ . x 5 - s i n  c~. x 7 -~-cos t~ . x a 

q3 = -- COS ~ .  x 1 + sin ~ .  x2 + cos cz. x 4 

+ s in ~ .  x 5 -  2 s in  ~ .  x 8 .  
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